Quantum-Computing
  • Welcome to Quantum-Computing
    • Start with Pennylane
  • The Project
    • Team
    • Discord
    • actual tasks
    • Termine
    • Trello-Planung
  • FAQ
  • Which tools do you use ?
    • Jupyter
    • Ubuntu
    • Visual Studio Code
    • Python virtual Env & Jupyter
      • Update Python Version
      • How to install virtuel Env on Ubuntu
        • Python with PipENV
        • Python with Venv
        • Uninstall Python Version
        • Using Jupyter with virtual Env
    • GitKraken
    • @Python
      • pyGIMLi
      • Qutip
      • scikit-learn
      • seaborn
    • Practical Tool - Circuit Builder
  • Self-study-Guide
    • Pennylane.ai
      • Tutorials
        • Getting Started
          • Basic tutorial: qubit rotation
    • Clean Code
    • Statistik
    • Komplexitätstheorie
      • Quantum Complexity
    • Logik
    • Physik
      • Visuelle Physik
      • Einstieg Quanten-Mechanik
      • Math behind
    • Stochastic & statistic
      • PCA
    • Mathe
      • Geometry
        • Page 1
        • Lie groups & continuous symmetries
        • Euclidean and non-Euclidean geometry
      • numeric linear algebra for Coders
      • Graphen-Theorie
      • Einsteins Summenkonventiom
      • EigenValues
      • Hilbert-Raum
        • Operatoren im Hilbertraum
      • Vector Calculus
      • Basics:
        • Calculus
          • Matrix Calculus
          • Derivative
          • Integral
        • Algebra ( precalculus )
      • Einfach:
        • Vektoren
      • Mittel:
      • Schwer:
      • Symbolbeschreibung
      • Tensor Produkt
      • Inners Produkt vs Kreuzprodukt
      • Vektorprodukt bzw. Kreuzprodukt
      • "inner product" - Skalarprodukt
      • Lineare Algebra
      • Notationen
      • Hilbert-Raum
      • Komplexe Zahlen
      • Die Matrix
      • Tensoren
      • Funktionen n-Ordnung
      • Integralrechnung
      • Rechnen im Kreis
      • Differentia(operator
    • DataScience
      • Practical Deep Learning for Coders
      • Computational Linear Algebra for Coders
      • Maschinen-Theorie
      • Algorithmen & Datenstrukturen
      • ClassicalMachineLearning
        • Supervised Learning
          • Regression
          • Lineare Modelle
          • Lineare und Quadratische Discriminanten Analyse
          • Support Vector Machines
          • Stochastik Gradient Descent
          • Nearest Nighbors
          • DecissionTrees
            • RegressionTree
            • Classification Tree
        • Unsupervised Learning
          • Gaussian Mixture Models
          • Neural Network Models ( unsupervised )
          • Clustering
      • Python
      • Minimal-Cost
      • Tree-Algorithms
      • Complexity
      • Multi-Out Problems
      • Classification
      • Regression
    • offtopic
      • Neuronale Netze
      • LibreOffice Math
        • Symbole
    • Griechisch für Anfänger
  • Course
    • Quantum Capstone
    • Lecture
      • Kapitel 2
      • Kapitel 3
      • Kapitel 4
        • Rechnen mit Zuständen
          • Hilbert-Raum
          • selbstadjunktierter Operator mit Spur N
          • unitärer Operator
      • Kapitel 5
      • DSE meets Quantum
      • Kapitel 1 - Welcome and cold start
    • Coding-Part
      • Kapitel 1
        • Installation der Arbeitsumgebung
          • Install Anaconda
          • Spyder Installation und Start
          • Umgang mit Conda im Terminal
        • Clean Template
      • Kapitel 2
        • First steps /w Python
        • Hello Qiskit
        • Hello Pennylane
      • Kapitel 3
      • Quantum-Gates
      • First own steps
      • Kapitel 6 - Quantum-Code
      • Kapitel 7
      • Kapitel 8
      • Kapitel 9
      • Kapitel 10
      • Special:
        • Saturday II
        • Saturday I
    • Axiome der Quanten-Mechanik
    • Course Kick-Off
  • Literature list
    • Deep Learning
  • Quantum Machine Learning
    • Quantum Projects
      • The Quantum Graph Recurrent Neural Network
      • Quantum circuit structure learning
      • Training and evaluating quantum kernels
      • Kernel-based training of quantum models with scikit-learne 2
      • Qubit_Rotation
      • Variational Quantum Linear Solver
      • Variational classifier
      • Understanding the Haar Measure
        • Unitary Designs
      • Lineare Regression @QML
      • Quantum-Simulation @Kubernetes with QuEST
      • Documentation
    • Reinforcement Learning
      • Konfidenzinterval [ ger. ]
      • Multi Arm Bandits
      • Markov Decision Processes
        • stochastic vs deterministic
        • path dependency
        • Value Function
        • markov probability
        • Bellman equation
        • Hamilton–Jacobi–Bellman (HJB) equation
    • Classification
    • Code Example:
    • Optimizer
    • Regression
  • Research Papers & More
    • Variational quantum Algorithms
    • Quantum Natural Gradient Descent
    • Boolsche Logik
    • Quantum-Logik
    • Bra-Ket
    • Quantum-Mathe
    • Quanten-Mechanik
      • Entanglement
      • Mathematische Grundlagen:
      • Quanten-Theorie
      • Born'sche Wahrscheinlichkeitsinterpretation
      • Quantenmechanische Gleichungen
      • Wellen-Gleichung
      • Wellen-Funktion
      • "The fundamental idea of wave mechanics " Schrödinger
      • Spin
    • Visualisation
    • Quantum-Informatik
      • Gradient Descent
      • UCSM Unit cycle state machine
    • Quanten-Physik
    • Collection[unsorted]
    • Quantum-Hardware
      • Hardware Vergleich
      • Quantum Trapping
    • Spin 1/2 (Fermion)
    • offtopic
    • Physik
      • Ising Model
      • Feynman Lectures
    • Komplexitätstheorie
      • Graph isomorphism problem
      • Quantum Komplexität
    • Quantum-Simulation
      • Hamiltonian simulation
      • QiBo -Simulation
    • Machine Learing
    • Reading Guide:
  • Coders Help
    • Pyhton
    • Anaconda
    • komplexe Zahlen
    • Numpy
    • Jupyter-Notebook
    • Logik
    • Terminal[Linux]
      • Mint
    • Collection-Folder
    • Additional TOOLs:
    • Code Book Quantum
    • Pennylane
  • Documentation-Guide
    • Jupyter Notebook
    • Qiskit
    • Python
      • NetworkX
      • MatPlotLib
    • Anaconda
    • Pennylane
    • Pennylane
    • Quantum-Gates
      • Controlled Z (CZ) Gate
      • Swap Gate
      • Phase ( S,P) Gate
      • Pauli Y Gate
      • Pauli X Gate
      • Hadamard ( H ) Gate
      • Toffoli double controlled-Not CCX Gate
      • Pauli Z Gate
      • CNOT ( CX )Gate
      • density matrix
  • Quantum-Hommage
    • ecosystem Quantum
    • Richard Bellman
    • Wolfgang Pauli
    • Max Planck
    • Andrew Helwer
    • William Rowan Hamilton
    • Bell's Theorie: Das Quanten-Venn-Diagramm-Paradoxon
    • Dirac–von Neumann axioms
    • Schrödingers Gleichung
    • Von Neumann
    • von Neumann Landauer Limit
    • Deutsch-Joza
      • Simon's problem
  • Algorithmen
    • The Basics
    • Graph Algorithms & Data Structures
    • Greedy Algorithms & Dynamic Programming
    • Worst-Case Analysis
    • Basic-Python Algorithms
    • Unsupervised Learning
    • Supervised Learning
    • Reinforcement Learning
    • Quantum
      • Shor-Algorithm
      • Grover's algorithm
      • Deutsch-Josza
      • Shor-Algorithm for Prime Factorization
    • Classification
    • Regression
  • Quantum @ LinuxFoundation
    • QIR
    • aide-qc
    • QCoDeS
  • Github
    • Team-Members
    • This GitBook
  • Quantum-Simulation
    • Quest
      • Publications
    • Cloud
      • Kubernetes
      • Kubernetes Tutorial
      • K8s & JupyterHUB
      • JupyterLAB @ JupyterHUB
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. Research Papers & More

Quanten-Mechanik

@Glimpse ( coming soon )

PreviousQuantum-MatheNextEntanglement

Last updated 3 years ago

Was this helpful?

Need to know:

[#Q-Beginn]

Bellsche Ungleichung: Zusammenfassung:

Bell's Inequality: Summary: Based on the work of John Bell in 1964, this is the thematization of Einstein's critical question ( see EPR ) on the paradox and claimed incompleteness of quantum mechanics. Explicitly, it is about the predictability of quantum mechanical properties ( or phenomena ) like the entanglement of quantum mechanics. Bell's inequality seems a bit confusing at first, because it formulates the unsatisfiability according to Einstein. This led to the fact that experiments were accomplished which disprove this inequality and thus which confirm the quantum mechanics. A summary on Wikipedia almost summarizes the EPR as follows: "As early as 1935, Albert Einstein, Boris Podolsky, and Nathan Rosen,[2] or EPR for short, had shown that the local-realistic point of view of classical physics forces one to ascribe individual properties to particles that govern their own behavior when measured, thus faking quantum mechanical randomness. The three authors concluded that quantum theory must be incomplete." "No exchange of information can be faster than light" ( Loosely based on Einstein ). Bell showed, however, that if one follows Einstein's concept and at the same time assumes that information can propagate at the maximum speed of light, then in certain experiments on pairs of particles the measurement results should always satisfy his inequality. However, the quantum theory predicts the violation of the inequality in certain cases for entangled particles. What was a thought experiment by Bell in 1964 was confirmed by real experiments from 1972, first[3] by Stuart Freedman and John Clauser.[4]

[#Q-Beginn]

Bell-Zustand Der Bell-Zusand beschreibt ein pysikalisches System aus mehreren Teilchen, dass Korrelation zeigt, die mit der klassichen Physik nicht erklärbar sind. Der Bell-Zustand beinhaltet all diese Phänomen, ist jedoch für das stark ausgeprägten Phänomen der Quantenverschränkung hervorragend gut geeignet. Wichtig hierbei ist der Bezug zu den elementaren Betrachtungsweisen der Lokalität und Realität, die parallel nicht in der Theorie vorhanden sein können. Der Bell-Zustand beschreibt daher einen von vier möglichen Zuständen. |0> && |1> bezeichnet man als Basis-Zustände. Diese verletzen die Bell’sche Ungleichung maximal. Als neuer Begriff wurde auch der Begriff des Qubits für die Beschreibung eines 2 dimensionalen Hilbertraums eingeführt

A Experiment:

[#Q-Beginn]

Summary: This theory was disproved by experiments. Nevertheless, the consideration is quite meaningful to internalize the perspective of the time and the development accompanying with it from the discussion of the time. (The discussion was based on the then current assumptions of physics. 1. causality principle 2.universality 3. locality 4. time independence ) To my knowledge the locality was replaced by the superposition. Einstein called this phenomenon "spooky action at a distance". Challenge was the theoretical consideration of quantum mechanics as a complete theory with the following condition: "In a complete theory, every element of physical reality must have a counterpart. A physical quantity whose value can be predicted with certainty without disturbing the system on which it is measured is an element of physical reality. "https://de.wikipedia.org/wiki/Einstein-Podolsky-Rosen-Paradoxon Heisenberg describes in the uncertainty relation that either the place or impulse can be considered. At the same time this excludes itself. From the perspective of EPR, the measurement of object 1 or measurement of place or impulse and the derivation on object 2 cannot come to a disturbance with the elements of the reality of object two. The assumption of locality says that processes of this kind can have asuwirkung only on the direct spatial environment of object 1. Consequently, quantum mechanics and Heisenberg's assumption are not correct. Niels Bohr contradicted this assumption, because the "disturbance-free measurement" is not defined adequately, because only one reality is assumed. The attempt of measurement of place and momentum ( as complementary attempt ) exclude each other. Both quantities exist, but can not be part of the same reality, but elements of two complementary realities. To illustrate this, one can mention the apple example. Does gravity belong to the reality of place and time? Yes, on earth, but not in the universe. Reality is therefore rather a situation description instead of a constant. Therefore the reader is allowed to question which realities exist and which observables can be assigned to which of these realities. An assertion is not a proof, even if the counter-evidence is missing, it is to be assumed that both assumptions are correct, until the proof disproves one side.

[Q-Hard] Zur Quantenmechanik der Stoßvorgänge [-Max Born] https://link.springer.com/article/10.1007%2FBF01397477

**** [#Q-Hard]

Einstein-Podolsky-Rosen-Paradox:
Niels
Bellsche UngleichungWikipedia
Bell testWikipedia
Experiment Reaffirms Quantum Weirdness | Quanta MagazineQuanta Magazine
Bell-ZustandWikipedia
Bloch-KugelWikipedia
Logo
Logo
Logo
Logo
Logo