Quantum-Computing
  • Welcome to Quantum-Computing
    • Start with Pennylane
  • The Project
    • Team
    • Discord
    • actual tasks
    • Termine
    • Trello-Planung
  • FAQ
  • Which tools do you use ?
    • Jupyter
    • Ubuntu
    • Visual Studio Code
    • Python virtual Env & Jupyter
      • Update Python Version
      • How to install virtuel Env on Ubuntu
        • Python with PipENV
        • Python with Venv
        • Uninstall Python Version
        • Using Jupyter with virtual Env
    • GitKraken
    • @Python
      • pyGIMLi
      • Qutip
      • scikit-learn
      • seaborn
    • Practical Tool - Circuit Builder
  • Self-study-Guide
    • Pennylane.ai
      • Tutorials
        • Getting Started
          • Basic tutorial: qubit rotation
    • Clean Code
    • Statistik
    • Komplexitätstheorie
      • Quantum Complexity
    • Logik
    • Physik
      • Visuelle Physik
      • Einstieg Quanten-Mechanik
      • Math behind
    • Stochastic & statistic
      • PCA
    • Mathe
      • Geometry
        • Page 1
        • Lie groups & continuous symmetries
        • Euclidean and non-Euclidean geometry
      • numeric linear algebra for Coders
      • Graphen-Theorie
      • Einsteins Summenkonventiom
      • EigenValues
      • Hilbert-Raum
        • Operatoren im Hilbertraum
      • Vector Calculus
      • Basics:
        • Calculus
          • Matrix Calculus
          • Derivative
          • Integral
        • Algebra ( precalculus )
      • Einfach:
        • Vektoren
      • Mittel:
      • Schwer:
      • Symbolbeschreibung
      • Tensor Produkt
      • Inners Produkt vs Kreuzprodukt
      • Vektorprodukt bzw. Kreuzprodukt
      • "inner product" - Skalarprodukt
      • Lineare Algebra
      • Notationen
      • Hilbert-Raum
      • Komplexe Zahlen
      • Die Matrix
      • Tensoren
      • Funktionen n-Ordnung
      • Integralrechnung
      • Rechnen im Kreis
      • Differentia(operator
    • DataScience
      • Practical Deep Learning for Coders
      • Computational Linear Algebra for Coders
      • Maschinen-Theorie
      • Algorithmen & Datenstrukturen
      • ClassicalMachineLearning
        • Supervised Learning
          • Regression
          • Lineare Modelle
          • Lineare und Quadratische Discriminanten Analyse
          • Support Vector Machines
          • Stochastik Gradient Descent
          • Nearest Nighbors
          • DecissionTrees
            • RegressionTree
            • Classification Tree
        • Unsupervised Learning
          • Gaussian Mixture Models
          • Neural Network Models ( unsupervised )
          • Clustering
      • Python
      • Minimal-Cost
      • Tree-Algorithms
      • Complexity
      • Multi-Out Problems
      • Classification
      • Regression
    • offtopic
      • Neuronale Netze
      • LibreOffice Math
        • Symbole
    • Griechisch für Anfänger
  • Course
    • Quantum Capstone
    • Lecture
      • Kapitel 2
      • Kapitel 3
      • Kapitel 4
        • Rechnen mit Zuständen
          • Hilbert-Raum
          • selbstadjunktierter Operator mit Spur N
          • unitärer Operator
      • Kapitel 5
      • DSE meets Quantum
      • Kapitel 1 - Welcome and cold start
    • Coding-Part
      • Kapitel 1
        • Installation der Arbeitsumgebung
          • Install Anaconda
          • Spyder Installation und Start
          • Umgang mit Conda im Terminal
        • Clean Template
      • Kapitel 2
        • First steps /w Python
        • Hello Qiskit
        • Hello Pennylane
      • Kapitel 3
      • Quantum-Gates
      • First own steps
      • Kapitel 6 - Quantum-Code
      • Kapitel 7
      • Kapitel 8
      • Kapitel 9
      • Kapitel 10
      • Special:
        • Saturday II
        • Saturday I
    • Axiome der Quanten-Mechanik
    • Course Kick-Off
  • Literature list
    • Deep Learning
  • Quantum Machine Learning
    • Quantum Projects
      • The Quantum Graph Recurrent Neural Network
      • Quantum circuit structure learning
      • Training and evaluating quantum kernels
      • Kernel-based training of quantum models with scikit-learne 2
      • Qubit_Rotation
      • Variational Quantum Linear Solver
      • Variational classifier
      • Understanding the Haar Measure
        • Unitary Designs
      • Lineare Regression @QML
      • Quantum-Simulation @Kubernetes with QuEST
      • Documentation
    • Reinforcement Learning
      • Konfidenzinterval [ ger. ]
      • Multi Arm Bandits
      • Markov Decision Processes
        • stochastic vs deterministic
        • path dependency
        • Value Function
        • markov probability
        • Bellman equation
        • Hamilton–Jacobi–Bellman (HJB) equation
    • Classification
    • Code Example:
    • Optimizer
    • Regression
  • Research Papers & More
    • Variational quantum Algorithms
    • Quantum Natural Gradient Descent
    • Boolsche Logik
    • Quantum-Logik
    • Bra-Ket
    • Quantum-Mathe
    • Quanten-Mechanik
      • Entanglement
      • Mathematische Grundlagen:
      • Quanten-Theorie
      • Born'sche Wahrscheinlichkeitsinterpretation
      • Quantenmechanische Gleichungen
      • Wellen-Gleichung
      • Wellen-Funktion
      • "The fundamental idea of wave mechanics " Schrödinger
      • Spin
    • Visualisation
    • Quantum-Informatik
      • Gradient Descent
      • UCSM Unit cycle state machine
    • Quanten-Physik
    • Collection[unsorted]
    • Quantum-Hardware
      • Hardware Vergleich
      • Quantum Trapping
    • Spin 1/2 (Fermion)
    • offtopic
    • Physik
      • Ising Model
      • Feynman Lectures
    • Komplexitätstheorie
      • Graph isomorphism problem
      • Quantum Komplexität
    • Quantum-Simulation
      • Hamiltonian simulation
      • QiBo -Simulation
    • Machine Learing
    • Reading Guide:
  • Coders Help
    • Pyhton
    • Anaconda
    • komplexe Zahlen
    • Numpy
    • Jupyter-Notebook
    • Logik
    • Terminal[Linux]
      • Mint
    • Collection-Folder
    • Additional TOOLs:
    • Code Book Quantum
    • Pennylane
  • Documentation-Guide
    • Jupyter Notebook
    • Qiskit
    • Python
      • NetworkX
      • MatPlotLib
    • Anaconda
    • Pennylane
    • Pennylane
    • Quantum-Gates
      • Controlled Z (CZ) Gate
      • Swap Gate
      • Phase ( S,P) Gate
      • Pauli Y Gate
      • Pauli X Gate
      • Hadamard ( H ) Gate
      • Toffoli double controlled-Not CCX Gate
      • Pauli Z Gate
      • CNOT ( CX )Gate
      • density matrix
  • Quantum-Hommage
    • ecosystem Quantum
    • Richard Bellman
    • Wolfgang Pauli
    • Max Planck
    • Andrew Helwer
    • William Rowan Hamilton
    • Bell's Theorie: Das Quanten-Venn-Diagramm-Paradoxon
    • Dirac–von Neumann axioms
    • Schrödingers Gleichung
    • Von Neumann
    • von Neumann Landauer Limit
    • Deutsch-Joza
      • Simon's problem
  • Algorithmen
    • The Basics
    • Graph Algorithms & Data Structures
    • Greedy Algorithms & Dynamic Programming
    • Worst-Case Analysis
    • Basic-Python Algorithms
    • Unsupervised Learning
    • Supervised Learning
    • Reinforcement Learning
    • Quantum
      • Shor-Algorithm
      • Grover's algorithm
      • Deutsch-Josza
      • Shor-Algorithm for Prime Factorization
    • Classification
    • Regression
  • Quantum @ LinuxFoundation
    • QIR
    • aide-qc
    • QCoDeS
  • Github
    • Team-Members
    • This GitBook
  • Quantum-Simulation
    • Quest
      • Publications
    • Cloud
      • Kubernetes
      • Kubernetes Tutorial
      • K8s & JupyterHUB
      • JupyterLAB @ JupyterHUB
Powered by GitBook
On this page
  • More details
  • more developer focus ....
  • Gradients and training ( @Variational circuits)

Was this helpful?

Edit on GitHub
  1. Quantum Machine Learning
  2. Quantum Projects

Documentation

naturally, a good way to start ... remember 80 % documentation and engineering and 20% coding

PreviousQuantum-Simulation @Kubernetes with QuESTNextReinforcement Learning

Last updated 3 years ago

Was this helpful?

More details

In the following sections you can learn more about the key features of PennyLane:

  1. shows how PennyLane unifies and simplifies the process of programming quantum circuits with trainable parameters.

  2. introduces how PennyLane is used with different optimization libraries to optimize quantum circuits or hybrid computations.

  3. outlines the various quantum circuit building blocks provided in PennyLane.

  4. presents the different options available to measure the output of quantum circuits.

  5. gives an overview of different larger-scale composable layers for building quantum algorithms.

  6. details the built-in tools for optimizing and training quantum computing and quantum machine learning circuits.

  7. provides details about how to customize PennyLane and provide credentials for quantum hardware access.

more developer focus ....

qml.state :

qml.kernels:

Gradients and training ( @Variational circuits)

Step 1:

Step 2:

For Variational circuits:

https://pennylane.readthedocs.io/en/stable/introduction/interfaces.html
https://pennylane.ai/qml/glossary/variational_circuit.html
Quantum circuits
Gradients and training
Quantum operations
Measurements
Templates
Optimizers
Configuration
https://pennylane.readthedocs.io/en/stable/code/api/pennylane.state.html
https://pennylane.readthedocs.io/en/stable/code/qml_kernels.html
https://pennylane.readthedocs.io/en/stable/introduction/interfaces.html
../_images/code.png