Quantum-Computing
  • Welcome to Quantum-Computing
    • Start with Pennylane
  • The Project
    • Team
    • Discord
    • actual tasks
    • Termine
    • Trello-Planung
  • FAQ
  • Which tools do you use ?
    • Jupyter
    • Ubuntu
    • Visual Studio Code
    • Python virtual Env & Jupyter
      • Update Python Version
      • How to install virtuel Env on Ubuntu
        • Python with PipENV
        • Python with Venv
        • Uninstall Python Version
        • Using Jupyter with virtual Env
    • GitKraken
    • @Python
      • pyGIMLi
      • Qutip
      • scikit-learn
      • seaborn
    • Practical Tool - Circuit Builder
  • Self-study-Guide
    • Pennylane.ai
      • Tutorials
        • Getting Started
          • Basic tutorial: qubit rotation
    • Clean Code
    • Statistik
    • Komplexitätstheorie
      • Quantum Complexity
    • Logik
    • Physik
      • Visuelle Physik
      • Einstieg Quanten-Mechanik
      • Math behind
    • Stochastic & statistic
      • PCA
    • Mathe
      • Geometry
        • Page 1
        • Lie groups & continuous symmetries
        • Euclidean and non-Euclidean geometry
      • numeric linear algebra for Coders
      • Graphen-Theorie
      • Einsteins Summenkonventiom
      • EigenValues
      • Hilbert-Raum
        • Operatoren im Hilbertraum
      • Vector Calculus
      • Basics:
        • Calculus
          • Matrix Calculus
          • Derivative
          • Integral
        • Algebra ( precalculus )
      • Einfach:
        • Vektoren
      • Mittel:
      • Schwer:
      • Symbolbeschreibung
      • Tensor Produkt
      • Inners Produkt vs Kreuzprodukt
      • Vektorprodukt bzw. Kreuzprodukt
      • "inner product" - Skalarprodukt
      • Lineare Algebra
      • Notationen
      • Hilbert-Raum
      • Komplexe Zahlen
      • Die Matrix
      • Tensoren
      • Funktionen n-Ordnung
      • Integralrechnung
      • Rechnen im Kreis
      • Differentia(operator
    • DataScience
      • Practical Deep Learning for Coders
      • Computational Linear Algebra for Coders
      • Maschinen-Theorie
      • Algorithmen & Datenstrukturen
      • ClassicalMachineLearning
        • Supervised Learning
          • Regression
          • Lineare Modelle
          • Lineare und Quadratische Discriminanten Analyse
          • Support Vector Machines
          • Stochastik Gradient Descent
          • Nearest Nighbors
          • DecissionTrees
            • RegressionTree
            • Classification Tree
        • Unsupervised Learning
          • Gaussian Mixture Models
          • Neural Network Models ( unsupervised )
          • Clustering
      • Python
      • Minimal-Cost
      • Tree-Algorithms
      • Complexity
      • Multi-Out Problems
      • Classification
      • Regression
    • offtopic
      • Neuronale Netze
      • LibreOffice Math
        • Symbole
    • Griechisch für Anfänger
  • Course
    • Quantum Capstone
    • Lecture
      • Kapitel 2
      • Kapitel 3
      • Kapitel 4
        • Rechnen mit Zuständen
          • Hilbert-Raum
          • selbstadjunktierter Operator mit Spur N
          • unitärer Operator
      • Kapitel 5
      • DSE meets Quantum
      • Kapitel 1 - Welcome and cold start
    • Coding-Part
      • Kapitel 1
        • Installation der Arbeitsumgebung
          • Install Anaconda
          • Spyder Installation und Start
          • Umgang mit Conda im Terminal
        • Clean Template
      • Kapitel 2
        • First steps /w Python
        • Hello Qiskit
        • Hello Pennylane
      • Kapitel 3
      • Quantum-Gates
      • First own steps
      • Kapitel 6 - Quantum-Code
      • Kapitel 7
      • Kapitel 8
      • Kapitel 9
      • Kapitel 10
      • Special:
        • Saturday II
        • Saturday I
    • Axiome der Quanten-Mechanik
    • Course Kick-Off
  • Literature list
    • Deep Learning
  • Quantum Machine Learning
    • Quantum Projects
      • The Quantum Graph Recurrent Neural Network
      • Quantum circuit structure learning
      • Training and evaluating quantum kernels
      • Kernel-based training of quantum models with scikit-learne 2
      • Qubit_Rotation
      • Variational Quantum Linear Solver
      • Variational classifier
      • Understanding the Haar Measure
        • Unitary Designs
      • Lineare Regression @QML
      • Quantum-Simulation @Kubernetes with QuEST
      • Documentation
    • Reinforcement Learning
      • Konfidenzinterval [ ger. ]
      • Multi Arm Bandits
      • Markov Decision Processes
        • stochastic vs deterministic
        • path dependency
        • Value Function
        • markov probability
        • Bellman equation
        • Hamilton–Jacobi–Bellman (HJB) equation
    • Classification
    • Code Example:
    • Optimizer
    • Regression
  • Research Papers & More
    • Variational quantum Algorithms
    • Quantum Natural Gradient Descent
    • Boolsche Logik
    • Quantum-Logik
    • Bra-Ket
    • Quantum-Mathe
    • Quanten-Mechanik
      • Entanglement
      • Mathematische Grundlagen:
      • Quanten-Theorie
      • Born'sche Wahrscheinlichkeitsinterpretation
      • Quantenmechanische Gleichungen
      • Wellen-Gleichung
      • Wellen-Funktion
      • "The fundamental idea of wave mechanics " Schrödinger
      • Spin
    • Visualisation
    • Quantum-Informatik
      • Gradient Descent
      • UCSM Unit cycle state machine
    • Quanten-Physik
    • Collection[unsorted]
    • Quantum-Hardware
      • Hardware Vergleich
      • Quantum Trapping
    • Spin 1/2 (Fermion)
    • offtopic
    • Physik
      • Ising Model
      • Feynman Lectures
    • Komplexitätstheorie
      • Graph isomorphism problem
      • Quantum Komplexität
    • Quantum-Simulation
      • Hamiltonian simulation
      • QiBo -Simulation
    • Machine Learing
    • Reading Guide:
  • Coders Help
    • Pyhton
    • Anaconda
    • komplexe Zahlen
    • Numpy
    • Jupyter-Notebook
    • Logik
    • Terminal[Linux]
      • Mint
    • Collection-Folder
    • Additional TOOLs:
    • Code Book Quantum
    • Pennylane
  • Documentation-Guide
    • Jupyter Notebook
    • Qiskit
    • Python
      • NetworkX
      • MatPlotLib
    • Anaconda
    • Pennylane
    • Pennylane
    • Quantum-Gates
      • Controlled Z (CZ) Gate
      • Swap Gate
      • Phase ( S,P) Gate
      • Pauli Y Gate
      • Pauli X Gate
      • Hadamard ( H ) Gate
      • Toffoli double controlled-Not CCX Gate
      • Pauli Z Gate
      • CNOT ( CX )Gate
      • density matrix
  • Quantum-Hommage
    • ecosystem Quantum
    • Richard Bellman
    • Wolfgang Pauli
    • Max Planck
    • Andrew Helwer
    • William Rowan Hamilton
    • Bell's Theorie: Das Quanten-Venn-Diagramm-Paradoxon
    • Dirac–von Neumann axioms
    • Schrödingers Gleichung
    • Von Neumann
    • von Neumann Landauer Limit
    • Deutsch-Joza
      • Simon's problem
  • Algorithmen
    • The Basics
    • Graph Algorithms & Data Structures
    • Greedy Algorithms & Dynamic Programming
    • Worst-Case Analysis
    • Basic-Python Algorithms
    • Unsupervised Learning
    • Supervised Learning
    • Reinforcement Learning
    • Quantum
      • Shor-Algorithm
      • Grover's algorithm
      • Deutsch-Josza
      • Shor-Algorithm for Prime Factorization
    • Classification
    • Regression
  • Quantum @ LinuxFoundation
    • QIR
    • aide-qc
    • QCoDeS
  • Github
    • Team-Members
    • This GitBook
  • Quantum-Simulation
    • Quest
      • Publications
    • Cloud
      • Kubernetes
      • Kubernetes Tutorial
      • K8s & JupyterHUB
      • JupyterLAB @ JupyterHUB
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. Self-study-Guide
  2. Mathe

numeric linear algebra for Coders

@Glimpse ( coming soon )

PreviousEuclidean and non-Euclidean geometryNextGraphen-Theorie

Last updated 3 years ago

Was this helpful?

"This course is focused on the question: How do we do matrix computations with acceptable speed and acceptable accuracy?

This course was taught in the program, summer 2017 (for graduate students studying to become data scientists). The course is taught in Python with Jupyter Notebooks, using libraries such as Scikit-Learn and Numpy for most lessons, as well as Numba (a library that compiles Python to C for faster performance) and PyTorch (an alternative to Numpy for the GPU) in a few lessons.

Accompanying the notebooks is a . If you are ever confused by a lecture or it goes too quickly, check out the beginning of the next video, where I review concepts from the previous lecture, often explaining things from a new perspective or with different illustrations, and answer questions." fast.ai

@course [ LINK ]

University of San Francisco's Masters of Science in Analytics
playlist of lecture videos, available on YouTube