Quantum-Computing
  • Welcome to Quantum-Computing
    • Start with Pennylane
  • The Project
    • Team
    • Discord
    • actual tasks
    • Termine
    • Trello-Planung
  • FAQ
  • Which tools do you use ?
    • Jupyter
    • Ubuntu
    • Visual Studio Code
    • Python virtual Env & Jupyter
      • Update Python Version
      • How to install virtuel Env on Ubuntu
        • Python with PipENV
        • Python with Venv
        • Uninstall Python Version
        • Using Jupyter with virtual Env
    • GitKraken
    • @Python
      • pyGIMLi
      • Qutip
      • scikit-learn
      • seaborn
    • Practical Tool - Circuit Builder
  • Self-study-Guide
    • Pennylane.ai
      • Tutorials
        • Getting Started
          • Basic tutorial: qubit rotation
    • Clean Code
    • Statistik
    • Komplexitätstheorie
      • Quantum Complexity
    • Logik
    • Physik
      • Visuelle Physik
      • Einstieg Quanten-Mechanik
      • Math behind
    • Stochastic & statistic
      • PCA
    • Mathe
      • Geometry
        • Page 1
        • Lie groups & continuous symmetries
        • Euclidean and non-Euclidean geometry
      • numeric linear algebra for Coders
      • Graphen-Theorie
      • Einsteins Summenkonventiom
      • EigenValues
      • Hilbert-Raum
        • Operatoren im Hilbertraum
      • Vector Calculus
      • Basics:
        • Calculus
          • Matrix Calculus
          • Derivative
          • Integral
        • Algebra ( precalculus )
      • Einfach:
        • Vektoren
      • Mittel:
      • Schwer:
      • Symbolbeschreibung
      • Tensor Produkt
      • Inners Produkt vs Kreuzprodukt
      • Vektorprodukt bzw. Kreuzprodukt
      • "inner product" - Skalarprodukt
      • Lineare Algebra
      • Notationen
      • Hilbert-Raum
      • Komplexe Zahlen
      • Die Matrix
      • Tensoren
      • Funktionen n-Ordnung
      • Integralrechnung
      • Rechnen im Kreis
      • Differentia(operator
    • DataScience
      • Practical Deep Learning for Coders
      • Computational Linear Algebra for Coders
      • Maschinen-Theorie
      • Algorithmen & Datenstrukturen
      • ClassicalMachineLearning
        • Supervised Learning
          • Regression
          • Lineare Modelle
          • Lineare und Quadratische Discriminanten Analyse
          • Support Vector Machines
          • Stochastik Gradient Descent
          • Nearest Nighbors
          • DecissionTrees
            • RegressionTree
            • Classification Tree
        • Unsupervised Learning
          • Gaussian Mixture Models
          • Neural Network Models ( unsupervised )
          • Clustering
      • Python
      • Minimal-Cost
      • Tree-Algorithms
      • Complexity
      • Multi-Out Problems
      • Classification
      • Regression
    • offtopic
      • Neuronale Netze
      • LibreOffice Math
        • Symbole
    • Griechisch für Anfänger
  • Course
    • Quantum Capstone
    • Lecture
      • Kapitel 2
      • Kapitel 3
      • Kapitel 4
        • Rechnen mit Zuständen
          • Hilbert-Raum
          • selbstadjunktierter Operator mit Spur N
          • unitärer Operator
      • Kapitel 5
      • DSE meets Quantum
      • Kapitel 1 - Welcome and cold start
    • Coding-Part
      • Kapitel 1
        • Installation der Arbeitsumgebung
          • Install Anaconda
          • Spyder Installation und Start
          • Umgang mit Conda im Terminal
        • Clean Template
      • Kapitel 2
        • First steps /w Python
        • Hello Qiskit
        • Hello Pennylane
      • Kapitel 3
      • Quantum-Gates
      • First own steps
      • Kapitel 6 - Quantum-Code
      • Kapitel 7
      • Kapitel 8
      • Kapitel 9
      • Kapitel 10
      • Special:
        • Saturday II
        • Saturday I
    • Axiome der Quanten-Mechanik
    • Course Kick-Off
  • Literature list
    • Deep Learning
  • Quantum Machine Learning
    • Quantum Projects
      • The Quantum Graph Recurrent Neural Network
      • Quantum circuit structure learning
      • Training and evaluating quantum kernels
      • Kernel-based training of quantum models with scikit-learne 2
      • Qubit_Rotation
      • Variational Quantum Linear Solver
      • Variational classifier
      • Understanding the Haar Measure
        • Unitary Designs
      • Lineare Regression @QML
      • Quantum-Simulation @Kubernetes with QuEST
      • Documentation
    • Reinforcement Learning
      • Konfidenzinterval [ ger. ]
      • Multi Arm Bandits
      • Markov Decision Processes
        • stochastic vs deterministic
        • path dependency
        • Value Function
        • markov probability
        • Bellman equation
        • Hamilton–Jacobi–Bellman (HJB) equation
    • Classification
    • Code Example:
    • Optimizer
    • Regression
  • Research Papers & More
    • Variational quantum Algorithms
    • Quantum Natural Gradient Descent
    • Boolsche Logik
    • Quantum-Logik
    • Bra-Ket
    • Quantum-Mathe
    • Quanten-Mechanik
      • Entanglement
      • Mathematische Grundlagen:
      • Quanten-Theorie
      • Born'sche Wahrscheinlichkeitsinterpretation
      • Quantenmechanische Gleichungen
      • Wellen-Gleichung
      • Wellen-Funktion
      • "The fundamental idea of wave mechanics " Schrödinger
      • Spin
    • Visualisation
    • Quantum-Informatik
      • Gradient Descent
      • UCSM Unit cycle state machine
    • Quanten-Physik
    • Collection[unsorted]
    • Quantum-Hardware
      • Hardware Vergleich
      • Quantum Trapping
    • Spin 1/2 (Fermion)
    • offtopic
    • Physik
      • Ising Model
      • Feynman Lectures
    • Komplexitätstheorie
      • Graph isomorphism problem
      • Quantum Komplexität
    • Quantum-Simulation
      • Hamiltonian simulation
      • QiBo -Simulation
    • Machine Learing
    • Reading Guide:
  • Coders Help
    • Pyhton
    • Anaconda
    • komplexe Zahlen
    • Numpy
    • Jupyter-Notebook
    • Logik
    • Terminal[Linux]
      • Mint
    • Collection-Folder
    • Additional TOOLs:
    • Code Book Quantum
    • Pennylane
  • Documentation-Guide
    • Jupyter Notebook
    • Qiskit
    • Python
      • NetworkX
      • MatPlotLib
    • Anaconda
    • Pennylane
    • Pennylane
    • Quantum-Gates
      • Controlled Z (CZ) Gate
      • Swap Gate
      • Phase ( S,P) Gate
      • Pauli Y Gate
      • Pauli X Gate
      • Hadamard ( H ) Gate
      • Toffoli double controlled-Not CCX Gate
      • Pauli Z Gate
      • CNOT ( CX )Gate
      • density matrix
  • Quantum-Hommage
    • ecosystem Quantum
    • Richard Bellman
    • Wolfgang Pauli
    • Max Planck
    • Andrew Helwer
    • William Rowan Hamilton
    • Bell's Theorie: Das Quanten-Venn-Diagramm-Paradoxon
    • Dirac–von Neumann axioms
    • Schrödingers Gleichung
    • Von Neumann
    • von Neumann Landauer Limit
    • Deutsch-Joza
      • Simon's problem
  • Algorithmen
    • The Basics
    • Graph Algorithms & Data Structures
    • Greedy Algorithms & Dynamic Programming
    • Worst-Case Analysis
    • Basic-Python Algorithms
    • Unsupervised Learning
    • Supervised Learning
    • Reinforcement Learning
    • Quantum
      • Shor-Algorithm
      • Grover's algorithm
      • Deutsch-Josza
      • Shor-Algorithm for Prime Factorization
    • Classification
    • Regression
  • Quantum @ LinuxFoundation
    • QIR
    • aide-qc
    • QCoDeS
  • Github
    • Team-Members
    • This GitBook
  • Quantum-Simulation
    • Quest
      • Publications
    • Cloud
      • Kubernetes
      • Kubernetes Tutorial
      • K8s & JupyterHUB
      • JupyterLAB @ JupyterHUB
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. Quantum Machine Learning
  2. Reinforcement Learning
  3. Markov Decision Processes

stochastic vs deterministic

@glimpse [ coming soon ]

@

Any model with an error term is stochastic.

A model or process is stochastic if it is random. For example, given the same inputs (independent variables, weights / parameters, hyperparameters, etc.), the model may produce different outputs. In deterministic models, the output is completely specified by the inputs to the model (independent variables, weights / parameters, hyperparameters, etc.), so if the same inputs are given to the model, the outputs will be identical. The origin of the term "stochastic" is in stochastic processes . As a rule of thumb, if a model has a random variable, it is stochastic. Stochastic models can even be simple independent random variables.

A simpler example of a stochastic model is the flip of a fair coin (heads or tails), which can be modeled stochastically as a uniformly distributed binary random variable or as a Bernoulli process . You can also consider the coin toss as a physical system and create a deterministic model (in an idealized environment) if you take into account the shape of the coin, the angle and force of impact, the distance to the surface, etc. The latter (physical) model of the coin toss contains no random variables (e.g., it does not take into account any measurement error of any of the inputs to the model), then it is deterministic.

In addition, there is sometimes confusion between stationary stochastic processes and nonstationary stochastic processes. Stationarity means that statistics such as mean or variance in the model do not change over time. Both are still considered stochastic models/processes as long as randomness is involved. Wold's decomposition states that any stationary stochastic process can be written as the sum of a deterministic and a stochastic process.

PreviousMarkov Decision ProcessesNextpath dependency

Last updated 3 years ago

Was this helpful?