Quantum-Computing
  • Welcome to Quantum-Computing
    • Start with Pennylane
  • The Project
    • Team
    • Discord
    • actual tasks
    • Termine
    • Trello-Planung
  • FAQ
  • Which tools do you use ?
    • Jupyter
    • Ubuntu
    • Visual Studio Code
    • Python virtual Env & Jupyter
      • Update Python Version
      • How to install virtuel Env on Ubuntu
        • Python with PipENV
        • Python with Venv
        • Uninstall Python Version
        • Using Jupyter with virtual Env
    • GitKraken
    • @Python
      • pyGIMLi
      • Qutip
      • scikit-learn
      • seaborn
    • Practical Tool - Circuit Builder
  • Self-study-Guide
    • Pennylane.ai
      • Tutorials
        • Getting Started
          • Basic tutorial: qubit rotation
    • Clean Code
    • Statistik
    • Komplexitätstheorie
      • Quantum Complexity
    • Logik
    • Physik
      • Visuelle Physik
      • Einstieg Quanten-Mechanik
      • Math behind
    • Stochastic & statistic
      • PCA
    • Mathe
      • Geometry
        • Page 1
        • Lie groups & continuous symmetries
        • Euclidean and non-Euclidean geometry
      • numeric linear algebra for Coders
      • Graphen-Theorie
      • Einsteins Summenkonventiom
      • EigenValues
      • Hilbert-Raum
        • Operatoren im Hilbertraum
      • Vector Calculus
      • Basics:
        • Calculus
          • Matrix Calculus
          • Derivative
          • Integral
        • Algebra ( precalculus )
      • Einfach:
        • Vektoren
      • Mittel:
      • Schwer:
      • Symbolbeschreibung
      • Tensor Produkt
      • Inners Produkt vs Kreuzprodukt
      • Vektorprodukt bzw. Kreuzprodukt
      • "inner product" - Skalarprodukt
      • Lineare Algebra
      • Notationen
      • Hilbert-Raum
      • Komplexe Zahlen
      • Die Matrix
      • Tensoren
      • Funktionen n-Ordnung
      • Integralrechnung
      • Rechnen im Kreis
      • Differentia(operator
    • DataScience
      • Practical Deep Learning for Coders
      • Computational Linear Algebra for Coders
      • Maschinen-Theorie
      • Algorithmen & Datenstrukturen
      • ClassicalMachineLearning
        • Supervised Learning
          • Regression
          • Lineare Modelle
          • Lineare und Quadratische Discriminanten Analyse
          • Support Vector Machines
          • Stochastik Gradient Descent
          • Nearest Nighbors
          • DecissionTrees
            • RegressionTree
            • Classification Tree
        • Unsupervised Learning
          • Gaussian Mixture Models
          • Neural Network Models ( unsupervised )
          • Clustering
      • Python
      • Minimal-Cost
      • Tree-Algorithms
      • Complexity
      • Multi-Out Problems
      • Classification
      • Regression
    • offtopic
      • Neuronale Netze
      • LibreOffice Math
        • Symbole
    • Griechisch für Anfänger
  • Course
    • Quantum Capstone
    • Lecture
      • Kapitel 2
      • Kapitel 3
      • Kapitel 4
        • Rechnen mit Zuständen
          • Hilbert-Raum
          • selbstadjunktierter Operator mit Spur N
          • unitärer Operator
      • Kapitel 5
      • DSE meets Quantum
      • Kapitel 1 - Welcome and cold start
    • Coding-Part
      • Kapitel 1
        • Installation der Arbeitsumgebung
          • Install Anaconda
          • Spyder Installation und Start
          • Umgang mit Conda im Terminal
        • Clean Template
      • Kapitel 2
        • First steps /w Python
        • Hello Qiskit
        • Hello Pennylane
      • Kapitel 3
      • Quantum-Gates
      • First own steps
      • Kapitel 6 - Quantum-Code
      • Kapitel 7
      • Kapitel 8
      • Kapitel 9
      • Kapitel 10
      • Special:
        • Saturday II
        • Saturday I
    • Axiome der Quanten-Mechanik
    • Course Kick-Off
  • Literature list
    • Deep Learning
  • Quantum Machine Learning
    • Quantum Projects
      • The Quantum Graph Recurrent Neural Network
      • Quantum circuit structure learning
      • Training and evaluating quantum kernels
      • Kernel-based training of quantum models with scikit-learne 2
      • Qubit_Rotation
      • Variational Quantum Linear Solver
      • Variational classifier
      • Understanding the Haar Measure
        • Unitary Designs
      • Lineare Regression @QML
      • Quantum-Simulation @Kubernetes with QuEST
      • Documentation
    • Reinforcement Learning
      • Konfidenzinterval [ ger. ]
      • Multi Arm Bandits
      • Markov Decision Processes
        • stochastic vs deterministic
        • path dependency
        • Value Function
        • markov probability
        • Bellman equation
        • Hamilton–Jacobi–Bellman (HJB) equation
    • Classification
    • Code Example:
    • Optimizer
    • Regression
  • Research Papers & More
    • Variational quantum Algorithms
    • Quantum Natural Gradient Descent
    • Boolsche Logik
    • Quantum-Logik
    • Bra-Ket
    • Quantum-Mathe
    • Quanten-Mechanik
      • Entanglement
      • Mathematische Grundlagen:
      • Quanten-Theorie
      • Born'sche Wahrscheinlichkeitsinterpretation
      • Quantenmechanische Gleichungen
      • Wellen-Gleichung
      • Wellen-Funktion
      • "The fundamental idea of wave mechanics " Schrödinger
      • Spin
    • Visualisation
    • Quantum-Informatik
      • Gradient Descent
      • UCSM Unit cycle state machine
    • Quanten-Physik
    • Collection[unsorted]
    • Quantum-Hardware
      • Hardware Vergleich
      • Quantum Trapping
    • Spin 1/2 (Fermion)
    • offtopic
    • Physik
      • Ising Model
      • Feynman Lectures
    • Komplexitätstheorie
      • Graph isomorphism problem
      • Quantum Komplexität
    • Quantum-Simulation
      • Hamiltonian simulation
      • QiBo -Simulation
    • Machine Learing
    • Reading Guide:
  • Coders Help
    • Pyhton
    • Anaconda
    • komplexe Zahlen
    • Numpy
    • Jupyter-Notebook
    • Logik
    • Terminal[Linux]
      • Mint
    • Collection-Folder
    • Additional TOOLs:
    • Code Book Quantum
    • Pennylane
  • Documentation-Guide
    • Jupyter Notebook
    • Qiskit
    • Python
      • NetworkX
      • MatPlotLib
    • Anaconda
    • Pennylane
    • Pennylane
    • Quantum-Gates
      • Controlled Z (CZ) Gate
      • Swap Gate
      • Phase ( S,P) Gate
      • Pauli Y Gate
      • Pauli X Gate
      • Hadamard ( H ) Gate
      • Toffoli double controlled-Not CCX Gate
      • Pauli Z Gate
      • CNOT ( CX )Gate
      • density matrix
  • Quantum-Hommage
    • ecosystem Quantum
    • Richard Bellman
    • Wolfgang Pauli
    • Max Planck
    • Andrew Helwer
    • William Rowan Hamilton
    • Bell's Theorie: Das Quanten-Venn-Diagramm-Paradoxon
    • Dirac–von Neumann axioms
    • Schrödingers Gleichung
    • Von Neumann
    • von Neumann Landauer Limit
    • Deutsch-Joza
      • Simon's problem
  • Algorithmen
    • The Basics
    • Graph Algorithms & Data Structures
    • Greedy Algorithms & Dynamic Programming
    • Worst-Case Analysis
    • Basic-Python Algorithms
    • Unsupervised Learning
    • Supervised Learning
    • Reinforcement Learning
    • Quantum
      • Shor-Algorithm
      • Grover's algorithm
      • Deutsch-Josza
      • Shor-Algorithm for Prime Factorization
    • Classification
    • Regression
  • Quantum @ LinuxFoundation
    • QIR
    • aide-qc
    • QCoDeS
  • Github
    • Team-Members
    • This GitBook
  • Quantum-Simulation
    • Quest
      • Publications
    • Cloud
      • Kubernetes
      • Kubernetes Tutorial
      • K8s & JupyterHUB
      • JupyterLAB @ JupyterHUB
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. Course
  2. Lecture
  3. Kapitel 4

Rechnen mit Zuständen

Es ist sehr schwer von der mathematischen Seite mit "Quanten-Berechnungen " an zu fangen. Dies Einstiegshürde hängt so hoch, da das Feld der "Quanten-Informatik" sehr interdisziplinär und tief in den

PreviousKapitel 4NextHilbert-Raum

Last updated 3 years ago

Was this helpful?

######################################################################

Ich empfehle dringend das Buch: "Mathematik der Quanteninformatik" von Wolfgang Scherer. M

#######################################################################

Folgende Inhalte sind Zusammenfassungen basierend auf dem Werk W,olfgang Scherer, da es die beste mathematische Darstellung der Quantenwelt ist, die mir bekannt ist.

Bei dem Beginnn in Zustanden und Wahrscheinlichkeiten zu rechnen ( bzw. mit Qubits, was eigentlich synonym verwendet wird) stellt sich aus der mathematischen und Physik Sicht die Frage, was wir eigentlich genau berechnen können. Eine sinnvolle Fragestellung da wir mathematisch Dinge sehr genau beschreiben können und theoretisch in der Physik auch. In der praktisch-orientierten "Quanten-Informatik" stellt man schnell fest, dass man sich auf einmal schnell mit Fehler-Werten auseinander setzen muss. Wir betrachten daher die "reinen" Zustände, die wir im Hilbert durch einen Vektor dar stellen können. So bleibt das Thema "Quantum" zwar kompliziert und gleichzeitig nach etwas üben "greifbar".

Gemischte Zustände sind ein wichtiger Teil um mit Qubits zu rechen. Diese bestehen aus positiven, selbstadjungierten Operatoren der Spur 1.

Diese Vorgehen ist nützlich da wir nun unsere "Mathematik" mit der Messungen aus der Physik abgleichen können. Dies wurde in vielen elementaren Operations ausreichend gemacht, da auf diesen Erfahrungen die System von IBM und Co laufen.

Im Endeffekt gleichen wir unsere mathematischen Beschreibung mit die Wissen der Physik ab. Die zu beobachtenden Objekte nennen wir OBSERVABLE. Diese werden mathematisch durch die eben eingeführten | im Hilbert-Raum beschrieben.

Zu der quantenmechanischen Betrachtung gehören neben der "Observablen" bekannte Begriffe:

Der Begriff "ERWARTUNGSWERT" bezieht sich auf den Mittelwert einer Messreihe

Für quantenmechanische Betrachtung der realtiven Häufigkeit wird der Begriff der WAHRSCHEINLICHKEIT benutzt. Die "Summe aller Dinge" aus Wahrscheinlichkeit und Mittelwert nennen wir ab nun ZUSTAND.

Nächster Abschnitt:
linearer
selbstadjunktierten Operatoren